

Question One: Show that the set \mathbb{N} is not bounded above.

Question Two: If $S := \{\frac{1}{n} - \frac{1}{m}\}$. Find *infS*, *supS*.

Question Three: Let S be nonempty set in \mathbb{R} . Let b < 0 and let $bS = \{bs : s \in S\}$. Prove that inf(bS) = bsupS and sup(bS) = binf(S).

Question four: Use the definition of the limit of a sequence to establish the following limits

1. $\lim \left(\frac{2n}{n+1}\right) = 2$ 2. $\lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$

Question five: Show that if $x_n \ge 0$ for all $n \in \mathbb{N}$ and $\lim x_n = 0$, then $\lim (\sqrt{x_n}) = 0$

Question six: Let $x_1 \ge 2$ and $x_{n+1} := 1 + \sqrt{x_n - 1}$. Shoe that (x_n) is decreasing and bounded below by 2. Find the limit.

Question seven: Prove or disprove the following statements:

- 1. A convergent sequence of real numbers is bounded.
- 2. The sum of two divergent sequences diverges.
- 3. Let x_n be a real sequence of real numbers. If $x_n^2 \to -x^2$ for $x \in \mathbb{R}$ for $x \in \mathbb{R}$. Then x = 0.
- 4. Let x_n be a real sequence of real numbers. If $x_n \to x$ for $x_n > 0$. Then x > 0.
- 5. Every Cauchy sequence is a bounded sequence.
- 6. The sequence $x_n = \sqrt{n+1}$ is a properly divergent sequence.