

Question One: Show that the set \mathbb{N} is not bounded above.

Question Two: If $S:=\left\{\frac{1}{n}-\frac{1}{m}\right\}$. Find $\inf S$, sup S.

Question Three: Let S be nonempty set in \mathbb{R}. Let $b<0$ and let $b S=\{b s: s \in S\}$. Prove that $\inf f(b S)=b s u p S$ and $\sup (b S)=\operatorname{binf}(S)$.

Question four: Use the definition of the limit of a sequence to establish the following limits

1. $\lim \left(\frac{2 n}{n+1}\right)=2$
2. $\lim \left(\frac{3 n+1}{2 n+5}\right)=\frac{3}{2}$

Question five: \quad Show that if $x_{n} \geq 0$ for all $n \in \mathbb{N}$ and $\lim x_{n}=0$, then $\lim \left(\sqrt{x_{n}}\right)=0$
Question six: Let $x_{1} \geq 2$ and $x_{n+1}:=1+\sqrt{x_{n}-1}$. Shoe that $\left(x_{n}\right)$ is decreasing and bounded below by 2 . Find the limit.

Question seven: Prove or disprove the following statements:

1. A convergent sequence of real numbers is bounded.
2. The sum of two divergent sequences diverges.
3. Let x_{n} be a real sequence of real numbers. If $x_{n}^{2} \rightarrow-x^{2}$ for $x \in \mathbb{R}$ for $x \in \mathbb{R}$. Then $x=0$.
4. Let x_{n} be a real sequence of real numbers. If $x_{n} \rightarrow x$ foe $x_{n}>0$. Then $x>0$.
5. Every Cauchy sequence is a bounded sequence.
6. The sequence $x_{n}=\sqrt{n+1}$ is a properly divergent sequence.
